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Situated Processes I

Treating Estimation and Mental Computation as
Situated Mathematical Processes1

Edward A. Silver

My assigned task in this paper was to identify some potentially fruitful

theoretical formulations for research on alternatives to paper-and-pencil

computation, such as estimation and mental computation. Since I approach the

topics of estimation and mental computation as an "outsider who has conducted
-

research primarily in the area of mathematical problem solving rather than

computation, I am biased toward consideration of the use of these mathematical

processes in problematic situations, and this bias is reflected herein. The central

thesis is that new research on these topics will benefit from more focused attention

on the stigma in which mental computation and estimation are used.

The paper begins with a brief discussion of cognitive theory, with special

attention to the emerging notion of situated cognition. I have chosen to discuss this

particular theoretical position both because it has not yet become established in

mathematics education research and because it may provide support for many in

the field who are seeking to make progress investigating contextualized aspects of

estimation and mental arithmetic. Next, I discuss some of my problem-solving

research that deals with situational factors as influences on children's problem-

solving performance. Finally, I discuss a possible direction for research that might

emerge from our serious consideration of mental computation and estimation as

situated mathematical processes.

Knowing in Context: A Challenge to Cognitive Theory

There are many theoretical perspectives which might form a suitable basis for

instructional research on computational alternatives. Case (1989) has reviewed
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Situated Processes 2

several of these and suggested produclive directions starting from empiricist,

logico-mathematical developmental, and cognitive structuralist perspectives. Most

of the work done to date on the topics of estimation and mental computation has

proceeded from these theoretical assumptions. For example, studies of expert

estimators or mental calculators have attempted to identify and describe the

cognitive processes and mental structures that appear to account for the expert

performance (e.g., Nohda, Shimizu, Yoshikawa, Reys, & Reys, 1990; Reys, Rybolt,

Bestgen, & Wyatt, 1982). Other studies have examined children's development of

competence on tasks of increasing complexity as they mature (e.g., Case &

Sowder, 1990; Sowder & Wheeler, 1986). These lines of work have been solidly

grounded in or closely allied with cognitive theory, and they represent fruitful

directions for further research.

Most of the research has been influenced by a general information-processing

framework. According to this view, knowledge and cognitive processes are

dissected into components and are hypothesized to reside in cognitive structures in

the mind of the knower. As Greeno has described it:

An information-processing analysis assumes that a person constructs a

representation of the situation and his or her goal and reasons by

manipulating the symbols in the representation. The person's knowledge

includes information structures corresponding to the concepts and

propositions. Analysis of a specific cognitive capability,, in this

framework, involves hypothesizing a set of processes for representing

situations, a set of knowledge structures -- most frequently in the form of

schemata -- that provide organization for the information an the reasoning

processes, and a set of pmcesses that make inferences of various kinds.

(1989c, p. 49)



Situated Processes 3

This general information-processing framework has been used productively to

analyze many areas of mathematics learning and performance, including

estimation and menta! arithmetic. Nevertheless, there are important aspects of

mathematics knowledge and its use that are not completely captured within this

perspective. An alternate theoretical perspective may be helpful.

Some recent cognitive research has begun by defining learning and expertise

in task domains not from the perspective of knowledge structures or abstract

general mental processes but rather from the perspective of knowledge use in

practice (Brown, Collins, & Duguid, 1989; Greeno, 1989a: Pea & Greeno, 1990).

The word "practice" is used here in the sense of Saibner (1984), who used the

term to describe a culturally organized set of significant activities with its own

technology and symbol system. The notion that expertise is contextual has entered

the theories of some cognitive scientists from at least three different directions:

social theories about language and the development of thought, anthropology and

the study of situated cognition, and the history and philosophy of scientific domains.

I will say Me about the social theory roots; the interested reader can find an

excellent account in Cole and Griffin (1980). Anthropologists have found that a

contextual view of expertise is useful as they have tried to describe the nonformal

knowledge of unschooled but highly skilled practitioners in various complex

performance domains, such as navigation (Hutchins, in press) and tailoring (Lave,

1977). Other support for the view that context plays an important role in

understanding expertise comes from studies which have emphasized the study of

mathematical knowledge acquisition and usage from the perspective of particular

cultural practices (e.g.., Carraher, Carraher, & Schliemann, 1985; Saxe, 1988) or

related work which has questioned the value of knowledge and principles acquired

in academic settings for the purposes of practical problem solving (e.g., Lave,

1988; Rogoff & Lave, 1984). In general, these studies have pointed not only to the
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situated nature of much quantitative reasoning in out-of-school settings but also to

the importance of situations in evoking particular kinds of performances. In

general, this work, along with several decades of work in psychology and

education that has noted a general lack of knowledge transfer across tasks and

situations, has caused many to question a theoretical perspective that posits

abstract knowledge in the head of the knower as he moves freely among situations

to which that knowledge might be applied. This has led to the development of an

alternative perspective that places performance contexts more centrally at the

theoretical core; namely, situated cognition (Brown, Collins, & Ouguid, 1989). It is

interesting to note that some researchers in this field hgave explored what they call

"oral mathematics," a term which refers to non-paper-and -pencil mathematics.

This oral mathematics, which is apparently used extensively outside the classroom

in everyday quantitative situations, can be thought of as situated mental

computation, often involving approximate numbers. It is interesting to contrast this

notion of "oral mathematics" with Pestalozzi and Colburn's use of the same term to

denote classroom exercises in rote, mental arithmetic (cf. Reys & Barger, this

volume).

A third impetus for the notion of highly contextualized expertise has been

developments in the phHosophy of science which have suggested that

understanding science requires understanding the practice in which scientists

engage. In the area of mathematics, the work of Lakatos (1976) on the social

processes of debate and argumentation in the development of mathematical ideas,

of Tou !min (1958) on the development of disciplinary concepts through a process

of selection and debate, and of Kitcher (1983) on the reference potential of

concepts and the importance of metamathematical aspects of new developments in

mathematics have been particularly influential in providing a foundation for this

7



Situated Processes

new epistemological view which emphasizes notions of disciplinary practice, social

construction of knowledge, and situated cognition.

Situated cognition is a theoretical position designed to explain the

relationship between knowing and doing. The theory of Otuated cognition

suggests, as its name implies, that all knowledge is situated in contexts; i.e.,

knowledge resides in a jointly constructed space of mind and the situation in which

mind finds itself confronted with a problem (Greeno, 1989a, 1989b). Although

somewhat controversial and not yet widely accepted in the research community,

this view may provide the needed theoretical basis for analyzing some important

aspects of mathematical cognition.

As Resnick has noted, work done from the general information-processing

perspective has tended to incorporate two fundamental assumptions, which she

calls decomposition and decontextualization:

The decomposition assumption refers to the notion that competence can be

completely defined by a collection of independent elements of knowledge or

skill....The decontextualization assumption refers to the idea that

competence exists independently of the performance that it enables; that

there is some pure or abstract form of knowing that remains intact no matter

what the conditions of its use; that knowledge is fully defined as something

inside an individual's head, independent of the situation in which the

individual acts. (1989, p. 35)

These assumptions are fundamental impediments to our efforts to understand

such widely observed phenomena as students who possess certain competences

but fail to demonstrate them on specific tasks that call for the competences, or

students who appear to lack a competence in classroom situations but perform well

on apparently similar tasks in out-of-c.lass setfings. Although one can study mental

arithmetic and estimation as decontextualized and decomposed processes, there
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may be much that is gained by setting aside these assumptions and treating them

instead as situated processes. In fact, I believe that estimation and mental

computation are especially well suited to a more contextualized perspective.

Consider, for example, the oft-noted tendency of students to resist using

estimation strategies to answer estimation problems. The most commonly

observed behavior is for children to calculate an exact answer and then round off

the answer to produce a number that appears to be more like an estimate.

Although somewhat difficult to understand and interpret from the perspective of

mental structures, this behavior may be better understood from a more

contextualized perspective. In particular, it can be argued that children have a

general tendency to seek exact answers to computations, especially when

presented in school or school-like senings. In the context of school mathematics,

this general tendency would be honored and supported by typical classroom

teaching practice in which exercises and problems that require exact answers are

posed. Given the general tendency of students to seek exact answers, given the

general similarity between the stimuli in tasks requiring exact answers and

estimates (e.g., same symbol systems, both presented as stories), and given that

the two kinds of tasks are both likely to be seen by students as school tasks, the

behavior of the students is not surprising. They are only slightly modifying the

performance of exact computation that is generally valued and rewarded in the

school situation.

The situated perspective may not only help us understand certain of students'

errors and failures but also assist us in designing research and instruction to

develop a more solid grounding in the processes of estimation and mental

computation. In order to do so, we will need to examine the settings in which these

processes are used. Several authors (e.g., Hope, 1986; Trafton, 1978, 1986;

Usiskin, 1986) have provided a use-oriented rationale for the importance of

9



Situated Processes 7

estimation and/or mental computation as topics in the school curriculum. With

respect to estimation, for example, it can be argued that there are only a few

situational characteristics which give rise naturally to the use of estimation. In

particular, estimation is natural or useful in these three settings: (a) prior to

engaging in an exact computation in order to gain advance information that might

aid in error detection or selection of a computatiol. method; (b) atter an exact

computation in order to check the reasonableness of the obtained answer; or (c) as

an alternative to an exact computation in settings for which the numbers are

infelicitous in some way, such as being very large or very small, or being unknown

or impossible to know exactly. These three estimation situations could form the

basis for estimation instruction, in which the use of estimation was modeled and

practiced in these three settings and particular estimation strategies emerged in the

situated use of estimation as a mathematical process. Such instruction would likely

look quite different from current instruction which tends to teach in sequence a set

of decontextualized estimation strategies that have been arranged into a hierarchy

of hypothesized complexity. Such instruction would follow naturally from an

attempt to implement many of the curricular and instructional changes suggested

by the NCTM Curriculum and Evaluation Standards for School Mathematics (1989)

such as integrating richer, more situational problems into mathematics instruction

or placing greater emphasis on the interpretation, rather than simply the

computation, of problem solutions.

Mathematics and Sense Making

In this section of the paper, I review some of my work on problem solving that

has also dealt with the importance of context, especially with respect to the

interpretation of problem solutions. Although providing a brief general account of

the work, I will concentrate on those aspects of the work that may have particular
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relevance to the topics of mental arithmetic and estimation. Moreover, I present the

work as an example of the ways in which the perspective of situated cognition may

enrich our understanding and interpretation of de a.

In a brief but persuasive article, Terezinha Carraher (1989) argues that the

time may be right for a fruitful cross-fertilization of paradigms in research on

chldren's th:nking and use of mathematical knowledge. In commenting on several

analyses (e.g., Baranes, Perry, & Stigler, 1989; Carpenter, Corbitt, Kepner,

Lindquist, & Reys, 1980; Carraher, Carraher, & Schliemann, 1985) of children's

ability to solve computation tasks, school-like story problems and contextualized

problem tasks, she demonstrates that different theoretical assumptions can

influence both the nature of the data considered and the interpretation of results:

"When researchers start from different conceptions, they ask different questions

about their data and find different answers. It seems, however, that the time for

rapproachment has come" (p. 322). I offer the following account of my research on

interpretation of solutions to story problems as an example of how the information-

processing perspective from which the work originally developed can be integrated

with a situated cognition perspective to provide a more complete understanding of

children's performance.

There are many anecdotal reports, and some empirical confirmation, that

children do not generally develop in school a disposition toward making sense out

of numbers or, more generally, of any mathematics they learn. Data from the

Fourth National Assessment of Educational Progress (e.g., Kouba, Brown,

Carpenter, Lindquist, Silver, & Cwafford, 1988; Brown, Carpenter, Kouba,

Lindquist. Silver, & Swafford, 1988) indicate that many students in the United

States see mathematics as a subject that is not creative, that consists mainly of

facts to be memorized, and that is about symbols rather than about ideas. The

prevalence among students of such views of school mathematics provides the
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underlying support for a belief that mathematics is not necessarily supposed to

make sense and that learning mathematics has little, if anything, to do with sense-

making.

Division with Remainders

Confirmation of the assertion that students tend to see mathematics as

disconnected from sense-making also comes from research I and my collaborators

have been conducting over the past few years on students' difficulties in solving

story problems involving division with remainders, such as "The science teacher at

Marie Curie School has been given 730 frogs. The frogs will be kept in tanks. Each

tank holds 50 frogs. How many tanks are needed to hold all the frop?"

The widespread failure of American students to succeed in solving problems

involving whole number division and remainders has been documented through

the National Assessment of Educational Progress and several state assessments.

Only 24% of a national sample of 13-year-olds was able to solve correctly the

following problem which appeared on the Mathematics portion of the Third

National Assessment of Educational Progress (NAEP, 1983): "An army bus holds

36 soldiers. If 1,128 soldiers are being bused to their training site, how many

buses are needed?" A similar division problem appeared on the 1983 version of

the California Assessment Program (CAP) Mathematics Test for Grade 6 and was

answered correctly by only about 35% of the sixth-graders in California In both

assessments, students commonly erred by choosing non-whole -number answers.

To understand better the basis for the observed difficulty that students have in

solving division problems involving remainders, several investigations have been

conducted with students in grades 6, 7, and 8 (e.g., Silver 1986, 1988; Silver,

Mukhopadhyay, & Gabriele, 1989; Silver & Shapiro, 1990; Silver & Smith, 1990).

Overall, the findings of these investigations suggest that students appear to have
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little difficulty recognizing that division is an appropriate mathematical operation to

be used in solving such problems and that they appear to have little difficulty

carrying out the required computation. The failure to solve such problems

successfully in school contexts appears to be directly related to students' failure to

*make sense* of their computational result with respect to the problem situation.

Although students generally have little difficulty with different forms of

expression for remainders in routine computation settings (e.g., 12 R2, 12 1/2, or

12.5), they often experience considerable difficulty when the computation is

embedded in a problem situation. One source of the difficulty is that the same

symbolic expression of a division problem can represent very different problem

siivaiions and have different answers that depend upon important aspects of the

situational context and the quantities involved in the problem. For example,

consider the following problems: "Mary has 100 brownies which she will put into

containers that hold exactly 40 brownies each. (1) How many containers can she

fill? (2) How many containers will she use for all the brownies? (3) After she fills as

many containers as she can, how many brownies will be left over?" To solve each

of these problems, one would perform the same calculation, 100 40, but give a

different answer to each problem. In the first problem, a quotient-only problem, the

remainder is essentially ignored and only the quotient is given as the answer to the

problem. For the second problem, an augmented-quotient problem, the existence

of a remainder leads us to increment the quotient when answering the question. In

the third problem, a remainder-only problem, the correct answer is the remainder

itself.

Unlike most story problems that students solve in elementary school, sense-

making is not optional activity for these problems. Since the same computational

result is obtained for each problem, these problems do not to allow successful

solution without semantic processing; i. e., without making sense of the situation,

13
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the quantities involved in the problem, and the context . A successful solution

appears to depend to a great extent on mappings between and among at least

three referential systems: the story text, the story situation, and a mathematical

model. The distinction between the story text and the story situation, which has

been articulated by Kintsch (1986), appears to hiz of critical importance in the

solution of division story problems involving remainders, and it may help inform

research on estimation story problems as well.

Consider a hypothesized version of a successful solution of the brownie

problems from this perspective. A successful solver would map from the story

(natural language) text representation of the problems into a mathematical model

representation of 100 ÷ 40, then perform the indicated computation within the

referential system of mathematics, expressing the resulting answer with an

appropriate mathematical representation. The solver would then map the

computational result back either to the story text representation or to the implied

story situation (in the "real world") representation in order to decide how to treat the

quotient and remainder. Through such a process, the successful solver would

finally obtain suitable mathematical and natural language representations of the

solution that have accompanying interpretations and validity within the referential

systems of real world situations and the knowledge domain of mathematics. Figure

1 provides a schematic representation of the mappings involved in this idealized

problem solution.

1 4
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Figure 1 Schematic representation of an idealized successful solution

In an early study (Silveri 986) it was hypothes;zed that students were failing to

attend to relevant information implicitly represented in the problem situation but not

explicitly stated in the story text (e. g., no one is to be left behind; on some bus there

may be some empty seats). Several problem variants were created that made

relevant structural information more salient and students' performance on these

variants was examined. The results of that study suggested that variations in the

presentation of the problem, designed to make explicit certain implicit information

in the problem or the required solution, significantly enhanced students'

performance. Unlike most considerations of "relevant information" for problem

solving in elementary mathematics, the focus of attention in the study was not so

much on information that would enhance the mapping between the story text and

the mathematical model but rather enhance the mappings between and among

these two reference spaces and the story situation.

1 5
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In follow-up research (Silver 1988a; Silver, Mukhopadhyay, & Gabriele, 1989)

students' performance on augmented-quotient division problems and other division

problem types (e.g., remainder-only problems and quotient-only problems) was

examined. These studies examined the effects on students' performance of their

solving other division problems that required the same computation and similar

referential mappings. The results indicated that students' performance on each

type of problem was enhanced by having students also solve related division

problems. In general, the results were consistent with the explanation that

enhanced performance was due to students' increased sensitivity and attention to

the relevant semantic and referential mappings involved in the target problem

solution. In particular, experience with the related problems may have drawn

attention to the need for mapping into either the story text representation or the

story situation representation after obtaining a solution to the target problem

through use of a mathematical model.

Taken together, these results and the assessment findings suggest that

students' failure to solve the division story problems may be due, at least in part, to

their incomplete mapping among the relevant referential systems. In particular,

students appear to map successfully from the problem text to a mathematical model

(in this case, a division computation to be performed), compute an answer within

the domain of the mathematics model, but fail to return to the problem story text or

tt, the story situation referent in order to determine the best answer to the question.

Figure 2 presents a schematic representation of a hypothesized version of a

student's unsuccessful solution attempt.
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Story Situation

Figure Z Schematic representation of hypothesized unsuccessful solution

Although the research has focused on interpretation of solutions with respect

to situations, it should be clear that all of the work described thus far has been

strongly influenced by the information-processing perspective discussed earlier. In

particular, the description of mental representations and mappings is deeply

embedded in that framework. As the work has progressed recently, a perspective

more akin to situated cognition has been found to be useful. in one recent study,

we have examined the problem-solving and interpretation performance of students

in interview settings (Smith & Silver, 1990). This study with 12 middle school

students revealed that some students who would have answered incorrectly if the

tasks were presented in a multiple-choice format were able to offer interesting

interpretations of their numerical answers. For example, students spoke of

"squishing in" the extra students or of ordering mini-vans rather than a full bus for

the extra students. This situated thinking and reasoning remained invisible in the

multiple-choice format used in the prior research.

17
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In order to explore the general prevalence of this kind of situated reasoning

another study was recently conducted with about 200 middle school students

(Silver & Shapiro, 1990). In order to move away from the multiple-choice format yet

accommodate the large number of students, a paper and pencil, free response task

was developed and administered. Much to our surprise, little evidence of situated

reasoning was found in the responses of the students. In particular, nearly 60% of

the students provided no written interpretation at all. Of the 30% of the students

who gave the mathematically correct answer to the augmented quotient problem,

about 2/3 gave an appropriate interpretation, but there was little evidence of any

appropriate interpretation of alternative responses (e.g., mini-vans to explain

fractional answers or "squishing" to explain other answers) by the remaining 70%

of the students. After struggling with our interpretation of these findings, we

discussed the results with the teachers who had administered the tasks to their

students. The teachers revealed that many students discussed the problem after

handing in their work and proposed alternate solutions and interpretations. This

lively discussion, apparently rich in examples of situated reasoning, is evidence for

the fact that students had the capability to provide interesting interpretations of their

calculations. Yet, even in the free response mode, these interpretations remained

invisible to us because the students did not believe their interpretations were

appropriate to be included in the work that they handed in; I. e., their interpretations

were not seen by them to be part of what would be accepted as mathematics work.

This latter finding points to a potentially serious barrier to students' becoming adept

at mathematical performances involving interpretation and sunse making.

If estimation and Mental computation are seen as components of a more

general construct called number sense, then there are at least twz important points

to be made about the findings from the research on division story problems and the

general topic of number sense. One point is fairly obvious: making sensible

18
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judgments about the reasonableness of answers (e.g., recognizing that one cannot

have a fraction of a bus or a fish tank) or being able to offer reasonable

interpretations of non-standard answers (e.g., mini-vans for fractions of buses) is

surely one component of what we refer to as number sense. The second aspect is

somewhat more subtle and relates more to the issue of students' disposition toward

sense-making. The findings regarding students' difficulties with division story

problems and their tendency to divorce their situated reasoning from their school

mathematics solutions provide support for the notion that school mathematics

education is not currently fostering the development in students of a general

inclination toward sense-making in quantitative matters.

A Situated Perspective on Further Research

I have attempted to illustrate the value and potential power of viewing

mathematical knowledge and performance from the perspective of the situations in

which it is used. We have discussed situated cogn;tion as an alternative theoretical

perspective that may enhance our understanding of some important aspects of

estimation and mental computation. And we have considered some research on

students' interpretations of the results of their computations in a problem-solving

setting from LIth information-processing and situated-cognition perspectives. I

hope that both the general theoretical perspective of situated cognition and the

particular model of semantic processing discussed earlier can be useful to

researchers studying estimation and mental computation as situated mathematical

processes. Although I do not advocate the abandonment of earlier theoretical

perspectives, and one can find them well-represented in my own work, I believe

there is much to be gained from considering the situ ted cognition perspective in

our examination of new research issues in this area.

1 9
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My final comments relate to an issue -- number sense -- that becomes more

salient if we take seriously a situated view of estimation and mental computation.

Number Sense and the Culture of the Mathematics Classroom

As noted in many of the papers in this volume, much of the current interest in

estimation and mental computation in the United States is due to a general interest

in the topic of number sense. Although it is diftult to define number sense

precisely, behaviors like estimating before or after computing, judging the

reasonableness of one's calculation, and using the relative size of numbers or

numerical benchmarks (such as basic facts) to guide quantitative activity are all

examples of se' se-making actions associated with numbers and numerical activity.

Thus far, instructional attempts to increase students' competences in the area of

number sense have tended to focus on discrete, teachable components of complex

skills. Attempts to improve students' number sense often focus on overt cognitive

behaviors whose manifestation will ensure that number sense is present and in

use. For example, instructional units have been developed to help students learn

many different techniques for estimating the result of a numerical computation,

learn information about the precision of measurement or calculation and

techniques for approximation, or learn strategies for mental mathematics in order to

increase students' flexibility with respect to calcuation strategies. Although this

instuctional approach is likely to increase the specific cognitive competence of the

students who learn from it, it may not be completely successful if it fails to embed

these competences in performances situated in authentic mathematical activity.

The perspective of situated cognition may be helpful to us as we examine the

design and effects of such instruction.

The situated cognition perspective also suggests that such instruction is unlikely

to be completely successful in increasing students' number sense if it fails to

2()
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address students' dispositions toward numerical activity, or more generally toward

mathematics. It is apparent from much of the research discussed above that

students do not believe that school mathematics makes sense or even that it

should. Unless situations are provided in which students can participate in the

authentic sense-making aspects of mathematical culture, it is unlikely that students

will alter that belief. Decomposed and decontextualized instructional sequences to

promote mental computation and estimation are likely to leave untouched this

important aspect of the culture of the mathematics classmom. To promote the

development in students of a finely tuned number sense, what is needed is nothing

short of cultural revolution in school mathematics education.

Regardless of how well the instructio, iesigned, isolated instruction on

individual components of number sense is unlikely to lead to the development in

students of an adequate sense-making disposition with respect to quantitative

processes and products. Considering the division example discussed above, it is

clear that teaching students simply to answer such questions correctly is not the

entire story. Our curriculum and our instructional methods must be restructured to

emphasize sense-making in all areas of mathematics instruction and at all grade

levels from kindergarten to grade 12. Moreover, our research needs to be directed

at understanding at much deeper levels children's sense-making capabilities so

that they can be built upon rather than ignored in nlassroom instruction.

As reform efforts proceed, care must be taken not to delete completely curricular

topics, such as work with very large or very small numbers, that can provide

important situations in which students can develop number sense. Likewise, we

would be wise to resist the temptation to believe that extensive use of calculators

will automatically develop good number sense. Although calculator activities can

be used in situations that might promote number sense, they can also be used in

ways that promote an over-reliance on the result found in the calculator display and

21
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increase students' failure to make sense of the situation, quantities, and numbers

involved. Recall that performance on the NAEP army bus problem was poorer in

the Third Mathematics Assessment (NAEP, 1983) when students used calculators

than when they used only paper and pencil!

Given the need for fundamental reform, researchers may need to be more

proactive in exploring these issues in a "transformative" research agenda (Silver,

1988b). Studies need to be undertaken that examine the long-term consequences

of early mathematics instruction which emphasizes sense-making on the part of

students and teachers. Curricular and instructional experiments related to number

sense also need to be conducted with older students as they learn more complex

procedures and solve more difficult problems; sense-making needs to be

embedded into the fabric of mathematics courses for these older students as well.

Although research must certainly also be done on specific components of number

sense, it would be unwise for us to believe that the sum of the cognitive

components would necessarily equal the complex whole of number sense.

Studies directed at students' general dispositions toward quantitative sense

making will deepen our understanding of these components. Moreover, we need

research related to student exploration of rich situations that evoke mathematical

sense-making behavior and its various components, such as estimation and

mental computation. This research on estimation and mental computation should ,

when amplified by similar investigations in related topic areas, assist us in meeting

a fundamental challenge for the next decade -- explicating the nature of the

relationship between richly contextualized, situated quantitative understandings

and abstract, powerful generalized conceptions of mathematical principles and

structures.
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Notes

1 This paper is based in part on research supported by the U. S. Depanment of

Education through a grant to the Learning Research and Development Center for

the Center for the Study of Learning. AU opinions stated are those of the author

and not necessarily those of the Center or the Department. An earlier version of

this paper was presented at the Japan/U. S. Joint Seminar on Computation for the

21st Century: Cross-Cultural Perspectives (Honolulu, HI; August 13-17, 1990).
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